Source code for dscribe.descriptors.acsf

# -*- coding: utf-8 -*-
"""Copyright 2019 DScribe developers

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import sys

import numpy as np

from scipy.sparse import coo_matrix

from dscribe.descriptors.descriptor import Descriptor
from dscribe.core import System

from ase import Atoms

from dscribe.ext import ACSFWrapper

import dscribe.utils.geometry


[docs]class ACSF(Descriptor): """Implementation of Atom-Centered Symmetry Functions. Currently valid for finite systems only. Notice that the species of the central atom is not encoded in the output, only the surrounding environment is encoded. In a typical application one can train a different model for each central species. For reference, see: "Atom-centered symmetry functions for constructing high-dimensional neural network potentials", Jörg Behler, The Journal of Chemical Physics, 134, 074106 (2011), https://doi.org/10.1063/1.3553717 """
[docs] def __init__( self, rcut, g2_params=None, g3_params=None, g4_params=None, g5_params=None, species=None, periodic=False, sparse=False ): """ Args: rcut (float): The smooth cutoff value in angstroms. This cutoff value is used throughout the calculations for all symmetry functions. g2_params (n*2 np.ndarray): A list of pairs of :math:`\eta` and :math:`R_s` parameters for :math:`G^2` functions. g3_params (n*1 np.ndarray): A list of :math:`\kappa` parameters for :math:`G^3` functions. g4_params (n*3 np.ndarray): A list of triplets of :math:`\eta`, :math:`\zeta` and :math:`\lambda` parameters for :math:`G^4` functions. g5_params (n*3 np.ndarray): A list of triplets of :math:`\eta`, :math:`\zeta` and :math:`\lambda` parameters for :math:`G^5` functions. species (iterable): The chemical species as a list of atomic numbers or as a list of chemical symbols. Notice that this is not the atomic numbers that are present for an individual system, but should contain all the elements that are ever going to be encountered when creating the descriptors for a set of systems. Keeping the number of chemical species as low as possible is preferable. periodic (bool): Determines whether the system is considered to be periodic. sparse (bool): Whether the output should be a sparse matrix or a dense numpy array. """ super().__init__(periodic=periodic, flatten=True, sparse=sparse) self.acsf_wrapper = ACSFWrapper() # Setup self.species = species self.g2_params = g2_params self.g3_params = g3_params self.g4_params = g4_params self.g5_params = g5_params self.rcut = rcut
[docs] def create(self, system, positions=None, n_jobs=1, verbose=False): """Return the ACSF output for the given systems and given positions. Args: system (:class:`ase.Atoms` or list of :class:`ase.Atoms`): One or many atomic structures. positions (list): Positions where to calculate ACSF. Can be provided as cartesian positions or atomic indices. If no positions are defined, the SOAP output will be created for all atoms in the system. When calculating SOAP for multiple systems, provide the positions as a list for each system. n_jobs (int): Number of parallel jobs to instantiate. Parallellizes the calculation across samples. Defaults to serial calculation with n_jobs=1. verbose(bool): Controls whether to print the progress of each job into to the console. Returns: np.ndarray | scipy.sparse.csr_matrix: The ACSF output for the given systems and positions. The return type depends on the 'sparse'-attribute. The first dimension is determined by the amount of positions and systems and the second dimension is determined by the get_number_of_features()-function. When multiple systems are provided the results are ordered by the input order of systems and their positions. """ # If single system given, skip the parallelization if isinstance(system, (Atoms, System)): return self.create_single(system, positions) else: self._check_system_list(system) # Combine input arguments if positions is None: inp = [(i_sys,) for i_sys in system] else: inp = list(zip(system, positions)) # For ACSF the output size for each job depends on the exact arguments. # Here we precalculate the size for each job to preallocate memory and # make the process faster. n_samples = len(system) k, m = divmod(n_samples, n_jobs) jobs = (inp[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n_jobs)) output_sizes = [] for i_job in jobs: n_desc = 0 if positions is None: n_desc = 0 for job in i_job: n_desc += len(job[0]) else: n_desc = 0 for i_sample, i_pos in i_job: if i_pos is not None: n_desc += len(i_pos) else: n_desc += len(i_sample) output_sizes.append(n_desc) # Create in parallel output = self.create_parallel(inp, self.create_single, n_jobs, output_sizes, verbose=verbose) return output
[docs] def create_single(self, system, positions=None): """Creates the descriptor for the given system. Args: system (:class:`ase.Atoms` | :class:`.System`): Input system. positions (iterable): Indices of the atoms around which the ACSF will be returned. If no positions defined, ACSF will be created for all atoms in the system. Returns: np.ndarray | scipy.sparse.coo_matrix: The ACSF output for the given system and positions. The return type depends on the 'sparse'-attribute. The first dimension is given by the number of positions and the second dimension is determined by the get_number_of_features()-function. """ # Transform the input system into the internal System-object system = self.get_system(system) # Create C-compatible list of atomic indices for which the ACSF is # calculated calculate_all = False if positions is None: calculate_all = True indices = np.arange(len(system)) else: indices = positions # If periodicity is not requested, and the output is requested for all # atoms, we skip all the intricate optimizations that will make things # actually slower for this case. if calculate_all and not self.periodic: n_atoms = len(system) all_pos = system.get_positions() dmat = dscribe.utils.geometry.get_adjacency_matrix(self.rcut, all_pos, all_pos) # Otherwise the amount of pairwise distances that are calculated is # kept at minimum. Only distances for the given indices (and possibly # the secondary neighbours if G4 is specified) are calculated. else: # Create the extended system if periodicity is requested. For ACSF only # the distance from central atom needs to be considered in extending # the system. if self.periodic: system = dscribe.utils.geometry.get_extended_system(system, self.rcut, return_cell_indices=False) # First calculate distances from specified centers to all other # atoms. This is already enough for everything else except G4. n_atoms = len(system) all_pos = system.get_positions() central_pos = all_pos[indices] dmat_primary = dscribe.utils.geometry.get_adjacency_matrix(self.rcut, central_pos, all_pos) # Create symmetric full matrix col = dmat_primary.col row = [indices[x] for x in dmat_primary.row] # Fix row numbering to refer to original system data = dmat_primary.data dmat = coo_matrix((data, (row, col)), shape=(n_atoms, n_atoms)) dmat_lil = dmat.tolil() dmat_lil[col, row] = dmat_lil[row, col] # If G4 terms are requested, calculate also secondary neighbour distances if len(self.g4_params) != 0: neighbour_indices = np.unique(col) neigh_pos = all_pos[neighbour_indices] dmat_secondary = dscribe.utils.geometry.get_adjacency_matrix(self.rcut, neigh_pos, neigh_pos) col = [neighbour_indices[x] for x in dmat_secondary.col] # Fix col numbering to refer to original system row = [neighbour_indices[x] for x in dmat_secondary.row] # Fix row numbering to refer to original system dmat_lil[row, col] = np.array(dmat_secondary.data) dmat = dmat_lil.tocoo() # Get adjancency list and full dense adjancency matrix neighbours = dscribe.utils.geometry.get_adjacency_list(dmat) dmat_dense = np.full((n_atoms, n_atoms), sys.float_info.max) # The non-neighbor values are treated as "infinitely far". dmat_dense[dmat.col, dmat.row] = dmat.data # Calculate ACSF with C++ output = np.array(self.acsf_wrapper.create( system.get_positions(), system.get_atomic_numbers(), dmat_dense, neighbours, indices, ), dtype = np.float32) # Check if there are types that have not been declared self.check_atomic_numbers(system.get_atomic_numbers()) # Return sparse matrix if requested if self._sparse: output = coo_matrix(output) return output
[docs] def get_number_of_features(self): """Used to inquire the final number of features that this descriptor will have. Returns: int: Number of features for this descriptor. """ wrapper = self.acsf_wrapper descsize = (1 + wrapper.n_g2 + wrapper.n_g3) * wrapper.n_types descsize += (wrapper.n_g4 + wrapper.n_g5) * wrapper.n_type_pairs return int(descsize)
@property def species(self): return self._species @species.setter def species(self, value): """Used to check the validity of given atomic numbers and to initialize the C-memory layout for them. Args: value(iterable): Chemical species either as a list of atomic numbers or list of chemical symbols. """ # The species are stored as atomic numbers for internal use. self._set_species(value) self.acsf_wrapper.atomic_numbers = self._atomic_numbers.tolist() @property def rcut(self): return self.acsf_wrapper.rcut @rcut.setter def rcut(self, value): """Used to check the validity of given radial cutoff. Args: value(float): Radial cutoff. """ if value <= 0: raise ValueError("Cutoff radius should be positive.") self.acsf_wrapper.rcut = value @property def g2_params(self): return self.acsf_wrapper.get_g2_params() @g2_params.setter def g2_params(self, value): """Used to check the validity of given G2 parameters. Args: value(n*3 array): List of G2 parameters. """ # Disable case if value is None: value = np.array([]) else: # Check dimensions value = np.array(value, dtype=np.float) if value.ndim != 2: raise ValueError("g2_params should be a matrix with two columns (eta, Rs).") if value.shape[1] != 2: raise ValueError("g2_params should be a matrix with two columns (eta, Rs).") # Check that etas are positive if np.any(value[:, 0] <= 0) is True: raise ValueError("G2 eta parameters should be positive numbers.") self.acsf_wrapper.set_g2_params(value.tolist()) @property def g3_params(self): return self.acsf_wrapper.g3_params @g3_params.setter def g3_params(self, value): """Used to check the validity of given G3 parameters and to initialize the C-memory layout for them. Args: value(array): List of G3 parameters. """ # Handle the disable case if value is None: value = np.array([]) else: # Check dimensions value = np.array(value, dtype=np.float) if value.ndim != 1: raise ValueError("g3_params should be a vector.") self.acsf_wrapper.g3_params = value.tolist() @property def g4_params(self): return self.acsf_wrapper.g4_params @g4_params.setter def g4_params(self, value): """Used to check the validity of given G4 parameters and to initialize the C-memory layout for them. Args: value(n*3 array): List of G4 parameters. """ # Handle the disable case if value is None: value = np.array([]) else: # Check dimensions value = np.array(value, dtype=np.float) if value.ndim != 2: raise ValueError("g4_params should be a matrix with three columns (eta, zeta, lambda).") if value.shape[1] != 3: raise ValueError("g4_params should be a matrix with three columns (eta, zeta, lambda).") # Check that etas are positive if np.any(value[:, 2] <= 0) is True: raise ValueError("3-body G4 eta parameters should be positive numbers.") self.acsf_wrapper.g4_params = value.tolist() @property def g5_params(self): return self.acsf_wrapper.g5_params @g5_params.setter def g5_params(self, value): """Used to check the validity of given G5 parameters and to initialize the C-memory layout for them. Args: value(n*3 array): List of G5 parameters. """ # Handle the disable case if value is None: value = np.array([]) else: # Check dimensions value = np.array(value, dtype=np.float) if value.ndim != 2: raise ValueError("g5_params should be a matrix with three columns (eta, zeta, lambda).") if value.shape[1] != 3: raise ValueError("g5_params should be a matrix with three columns (eta, zeta, lambda).") # Check that etas are positive if np.any(value[:, 2] <= 0) is True: raise ValueError("3-body G5 eta parameters should be positive numbers.") self.acsf_wrapper.g5_params = value.tolist()